Wow.
https://blog.google/innovation-and-ai/models-and-research/ge...
The arc-agi-2 score (84.6%) is from the semi-private eval set. If gemini-3-deepthink gets above 85% on the private eval set, it will be considered "solved"
>Submit a solution which scores 85% on the ARC-AGI-2 private evaluation set and win $700K. https://arcprize.org/guide#overview
Previous models including Claude Opus 4.6 have generally produced a lot of noise/things that the compiler already reliably optimizes out.
- non thinking models
- thinking models
- best of N models like deep think an gpt pro
Each one is of a certain computational complexity. Simplifying a bit, I think they map to - linear, quadratic and n^3 respectively.
I think there are certain class of problems that can’t be solved without thinking because it necessarily involves writing in a scratchpad. And same for best of N which involves exploring.
Two open questions
1) what’s the higher level here, is there a 4th option?
2) can a sufficiently large non thinking model perform the same as a smaller thinking?
Google has definitely been pulling ahead in AI over the last few months. I've been using Gemini and finding it's better than the other models (especially for biology where it doesn't refuse to answer harmless questions).
And I wonder how Gemini Deep Think will fare. My guess is that it will get half the way on some problems. But we will have to take an absence as a failure, because nobody wants to publish a negative result, even though it's so important for scientific research.
Not interested enough to pay $250 to try it out though.
It’s impossible for it to do anything but cut code down, drop features, lose stuff and give you less than the code you put in.
It’s puzzling because it spent months at the head of the pack now I don’t use it at all because why do I want any of those things when I’m doing development.
I’m a paid subscriber but there’s no point any more I’ll spend the money on Claude 4.6 instead.
Gemini has been way behind from the start.
They use the firehose of money from search to make it as close to free as possible so that they have some adoption numbers.
They use the firehose from search to pay for tons of researchers to hand hold academics so that their non-economic models and non-economic test-time-compute can solve isolated problems.
It's all so tiresome.
Try making models that are actually competitive, Google.
Sell them on the actual market and win on actual work product in millions of people lives.